Space-borne Submillimeter-wave Sounder for Molecular Emissions in the Stratosphere: SMILES

Junji INATANI
JEM/SMILES Mission Team

National Space Development Agency (NASDA)
&
Communications Research Laboratory (CRL)
Ministry of Posts and Telecommunications
SMILES:
Superconducting Submillimeter-wave Limb-emission Sounder

Mission Objectives

- Space Demonstration of Submillimeter Sensor Technology based on a Superconductive Mixer and 4-K Mechanical Cooler
- Experiments of Submillimeter Limb-Emission Sounding of the Atmosphere
- Global Observations of Trace Gases in the Stratosphere and Contribution to the Atmospheric Sciences
Scientific Objectives

Understanding global mechanism of ozone depletion

• Overall chemical processes:
 => Multi-species observations

• Global dynamics & Regional interactions:
 => Global 3-D observations

Advantages of SMILES

• High sensitivity:
 => Real-time map without spatial averaging

• Fine spectroscopy:
 => High detectability for minor weak species
Limb Sounding from the ISS

<table>
<thead>
<tr>
<th>Hj [km]</th>
<th>La [km]</th>
<th>dHa [km]</th>
<th>dLa [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>2050</td>
<td>3.40</td>
<td>209</td>
</tr>
<tr>
<td>400</td>
<td>2209</td>
<td>3.66</td>
<td>217</td>
</tr>
<tr>
<td>450</td>
<td>2358</td>
<td>3.91</td>
<td>224</td>
</tr>
</tbody>
</table>

Ha = 30 km, HPBW = 0.095 deg
Expected Spectra: Band-1

- H2O2
- H37Cl
- O3
- O3(v2)
- O3(v3)
- O18OO
- 18000
- HO35Cl
- HNO3
- SO2
- O35ClO
- HO79Br
- 35ClONO2
- 81BrO
- HO81Br
Expected Spectra: Band-2

1: HO2
3: H35Cl
5: O3
6: O3(v2)
7: O3(v3)
8: O17OO
11: 18000
14: HNO3
15: SO2
16: O35ClO
17: HO79Br
20: HO81Br
21: (35ClO)2
Expected Spectra: Band-3

1: HO2
8: O1700
9: 17000
11: 18000
12: 35ClO
14: HNO3
15: SO2
19: 81BrO
20: HO81Br
21: (35ClO)2
Global Mapping

Latitudes Coverage: 65 N to 38 S

Distribution of atmospheric regions sampled in consecutive frames of antenna scanning. Length of each frame is 53 sec.
Submm Signal is down-converted:

$\Rightarrow 11 - 13 \text{ GHz} \Rightarrow 1.55 - 2.75 \text{ GHz}$

Emission-line Spectra are derived by AOS (Acousto-optic Spectrometer).
View of SMILES
Submillimeter Receiver

Key Technology

- Superconductivity Electronics (SIS mixer)
- Cryogenic LNA Technology (HEMT amplifiers)
- Submillimeter Devices & Components
- Submillimeter Quasi-optics
- Cryostat Technology (4K level)
- Mechanical Cryo-cooler Technology (4K level)
Superconductive SIS mixer receivers have some 20 times higher sensitivity than conventional Schottky-diode mixer receivers for frequencies less than 700 GHz.
640 GHz SIS Mixer

Nb/AlOx/Nb Device
1.2 um x 1.2 um, 5.5 kA/cm2
Fabricated at
Nobeyama Radio Observatory
Cooled HEMT Amplifiers

20K-stage Amplifier

Two HEMT Devices: FHX76LP
Gain: 20-22 dB @300K
23-26 dB @20K

100K-stage Amplifier

Three HEMT Devices: FHX76LP
Gain: 28-32 dB @300K
30-33 dB @100K

By Nitsuki Ltd.
Submillimeter LO Source

BBM by RPG/Ominisys

Gunn Phase Noise:
< -90 dBC/Hz @ 1MHz

Submm Freq. Stability:
1×10^{-8} /deg
Receiver Optics

- LO SOURCE
- CRYOSTAT
- SIS MIXER 1
- SIS MIXER 2
- U1 + L1
- U2 + L2

Ambient -Temperature Optics

- FSP: Frequency Selective Polarizer
- Absorber
- U1 L2
- L1 U2
- TO COLD SKY
- TO ANTENNA

Cooled Optics

- Antenna Port
- Cold sky for Cold Load
- Wire-Grid #1
- Wire-Grid #2
- Wire-Grid #3
- Wire-Grid #4
- Wire-Grid #5
- SIS SIS Mixer
- Focussing Mirror
- Flat Mirror
- 100 K shield
- 20 K shield
- 4 K stage
- Optics in Ambient Temperature

Two Functions

- RF/LO Coupling
- Sideband Separation
SSB Filter with FSP’s

Single Sideband Filter: To separate USB and LSB signals

Frequency-Selective Polarizer:
- Suitable for a fixed-frequency application
- Extremely low reflection --- Low standing waves

SSB Filter (BBM) by Thomas Keating Ltd.
SRX Subsystem

Cryostat

AOPT

AAMP

CREC

He Compressor (ST)

To Antenna

Ambient Temperature Optics

To Cold-Sky Terminator

Single Sideband Filter

He Compressor (JT)

Sub-mm LO Source
Thermal Design of SMILES

Requirements

• State-of-the-art cryogenic design is needed to keep SIS mixers at 4.5 K, HEMT amplifiers at 20 K /100 K.

• Ambient-temperature Thermal Design is based on the Use of Coolant (FC-72)

• Detail Analysis is Needed on Influences of Radiation Coupling to Space

• High Temperature Stability is Needed for the Stable Operation of the Receiver
Cryogenics

• Requirements
 – SIS Mixers & Cooled Optics @ 4.5 K
 – HEMT Amplifiers @ 20 K & 100 K

• Mechanical Cooler
 – Cooling Method: Two-Stage Stirling & Joule-Thomson
 – Cooling Capacity:
 1000 mW @ 100 K
 210 mW @ 22 K
 20 mW @ 4.5 K
 – Power Consumption: 210 W (Coolers) + 90 W (Loss in PS)
Cryostat

Radiation Shield: MLI (40 layers)
Signal Input Window: IR Filters (‘Zitex’)
Support for 100 K Stage: S2-GFRP Straps (12 pieces)
Support for 20 K Stage: GFRP Pipes (4 pieces)
Support for 4 K Stage: CFRP Pipes (4 pieces)
Thermal Design of Cryostat

<table>
<thead>
<tr>
<th>Component</th>
<th>@100K-stage</th>
<th>@20K-stage</th>
<th>@4K-stage</th>
<th>Total Heat Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window</td>
<td>151</td>
<td>0</td>
<td>2.4</td>
<td>184</td>
</tr>
<tr>
<td>Wall</td>
<td>374</td>
<td>22</td>
<td>0.1</td>
<td>396</td>
</tr>
<tr>
<td>Support</td>
<td>231</td>
<td>47</td>
<td>2.4</td>
<td>280</td>
</tr>
<tr>
<td>IF cables</td>
<td>49</td>
<td>13</td>
<td>4.1</td>
<td>66</td>
</tr>
<tr>
<td>BIAS cables</td>
<td>9</td>
<td>2</td>
<td>0.1</td>
<td>11</td>
</tr>
<tr>
<td>BIAS current</td>
<td>8</td>
<td>3</td>
<td>0.0</td>
<td>11</td>
</tr>
<tr>
<td>Monitor cables</td>
<td>11</td>
<td>4</td>
<td>0.6</td>
<td>15</td>
</tr>
<tr>
<td>HEMT/SIS</td>
<td>30</td>
<td>20</td>
<td>1.0</td>
<td>51</td>
</tr>
<tr>
<td>JT HEX</td>
<td>167</td>
<td>87</td>
<td>0.0</td>
<td>254</td>
</tr>
<tr>
<td>Total</td>
<td>1030</td>
<td>198</td>
<td>10.7</td>
<td>1248</td>
</tr>
</tbody>
</table>

Window: Heat flow is reduced with two IR filters

IF cables: CuNi coaxial cables

HEMT current: Circuit is optimized for a Starved Bias Condition

JT load: Minimized by reducing the rate of GHe flow
Two-stage Stirling Cooler
Joule-Thomson Cooler

Cryostat (inc. ST Cold Head): 29 kg
Stirling Compressor: 10 kg
JT Compressors (2 units): 15 kg
GHe Piping: 7 kg
Control & Drivers: 23 kg
Concept of Thermal Control

Radiation coupling to space occurs through HCAM, FRGF and Antenna. This effect should be connected with the analysis for the coolant.
Quality of the Output Data

Key Parameters

- Tangent-Point Heights Covered: 10 – 60 km
- HPBW: 4.1 – 3.5 km (for the ISS altitude of 400 km)
- Sampling Interval: 2.4 – 2.1 km (for the ISS altitude of 400 km)
- Height Error: Bias 0.76 km (rms) + Random 0.34 km (rms)
- Sensitivity: 0.7 K (rms) for unit data
- Absolute Tb Accuracy: 3 K (rms) for Tb < 50 K
- Relative Tb Accuracy: 1.7 % (rms)
Antenna Response Pattern

Effective Pattern:
- Integrated over AZ angles
- Averaged for six consecutive EL points involved in a unit data
SMILES Radio Spectrometer

- **Bandwidth:**
 - 1200 MHz x 2 units
 - IF: 1.55 - 1.75 GHz / unit
- **Focal Plane:**
 - 1728-ch. CCD array x 2 units
- **Frequency Resolution:**
 - 1.8 MHz (FWHM)
 - cf. Channel Separation: 0.8 MHz / ch.
- **AD Conversion:**
 - 12-bit, 2-CCD readouts in 4.9 msec
- **Adder Output:**
 - 16 bits x 1728 ch. x 2 units in 500 msec

Acousto-Optic Spectrometer (Astrium & OPM)
Expected Sensitivity

![Graph showing expected sensitivity vs. atmospheric brightness temperature. The graph includes various lines and symbols representing different factors such as Radio(unit), GainVar(unit), SW(const), DNL(unit), DNL(>day), OA(unit), OA(1-day), and OA(1-month). The x-axis represents atmospheric brightness temperature in [K], and the y-axis represents sensitivity in [K, RMS].]
Accuracy of Absolute Brightness Temperature
ISS Environmental Issues

Compatible Design Needed

– Deterioration of environmental vacuum may occur due to contamination. Measures needed to protect SMILES operation.
 • Space Shuttle: Water Dumps
 • JEM-PM: Cabin Air Vents
– Some EMI may deteriorate the data quality of SMILES, even if it is too low to damage the instruments.
 • Most careful measures for EMI are indispensable.
 • EM-shielding designs are adopted.
Shield against ISS Environmental Fields

- 161 V/m, 2.2 GHz
- 79 V/m, 8.5 GHz
- 110 V/m, 25.5-27.5 GHz
- 12 V/m
- 20 V/m, 13.7-15.2 GHz
- 22 V/m, 25.5-27.5 GHz
- 33 V/m, 2.2 GHz
- 20 V/m, 8.5 GHz
- 50 V/m, 13.7-15.2 GHz
- 5 V/m, 30-200 MHz
- 20 V/m
Design Concept

- **Twofold Electromagnetic Shields:**
 - EM-Shield by **System Enclosure**: Isolation > 20 dB (Target)
 - EM-Shield by **Receiver Cryostat**: Isolation > 60 dB (Target)

- **To Suppress Radiation Leakage:**
 - Complete Gap Sealing for Enclosure Panels
 - Indium-coated “O-ring” for All Flanges in the Cryostat
 - “Back-to-back Horn” for Antenna/Receiver Interface
 (Cut-off Waveguide against EMI at 27.5 GHz or less)

- **To Suppress Leakage through Cables:**
 - Use of Shielded Cables
 - Use of EMI-shielded Connectors
 - Use of Low Pass Filters
 - Strict EMI Design in Each Component
Conclusion

• Outline of SMILES is described.
• Design of SMILES system and its components are almost finished.
• Expected performance matches the basic requirements of the atmospheric researches.
• SMILES will realize the highest-ever sensitivity for space-borne submillimeter observations.
• More efforts needed to overcome some difficulties associated with the ISS environments.